Related to "early"

Description:

Solution

With the currently available technologies Fiber Optic Temperature sensors stand out clearly to be the most suitable sensors for Emobility applications at higher voltages (250V+). The major benefits of Fiber optic Temperature sensors are: 

1. Safety: Fiber optics are safe – highest dielectric strength, ~1pC, tested up to 1500kV

2. Noise: Sensor are immune to electric, chemical and magnetic environments. Being used without any isolation, in applications that has 1500kV+ voltage, up to 25 Tesla magnetic field and chemical environment ranging from 0 to 14pH without any interference to the sensory readings.

3. Size: Ultra small sensors (Diameter of up to 0.4mm) to fit into tiniest spaces. 

4. Linearity: Fiber optic sensors transmit light signals through glass, the purest form of silica. The sensors are linear and does not need any compensation and special algorithms.

5. Response Time: Fiber optic temperature system has a milliseconds response level. Response rate varies between 1ms to 200ms depending on the type of monitor selected for the application. 

6. Repeatability: Fiber Optic temperature sensors are very stable and repeatable over the entire range without getting influenced by and external fields.

Related Keyphrases:

available technologies Fiber Optic Temperature sensors | Fiber optic temperature system | Fiber optic sensors | Ultra small sensors | 25 Tesla magnetic field | Emobility applications | magnetic environments | suitable sensors | Response rate varies | chemical environment | dielectric strength | Fiber optics | external fields | major benefits

Predictive maintenance differs from preventive maintenance because it relies on the actual condition of equipment, rather than average or expected life statistics, to predict when maintenance will be required.

Some of the main components that are necessary for implementing predictive maintenance are data collection and preprocessing, early fault detection, fault detection, time to failure prediction, maintenance scheduling and resource optimization.[3] Predictive maintenance has also been considered to be one of the driving forces for improving productivity and one of the ways to achieve "just-in-time" in manufacturing.[4]

Description:

Predictive maintenance differs from preventive maintenance because it relies on the actual condition of equipment, rather than average or expected life statistics, to predict when maintenance will be required.

Some of the main components that are necessary for implementing predictive maintenance are data collection and preprocessing, early fault detection, fault detection, time to failure prediction, maintenance scheduling and resource optimization.[3] Predictive maintenance has also been considered to be one of the driving forces for improving productivity and one of the ways to achieve "just-in-time" in manufacturing.[4]

Related Keyphrases:

Predictive maintenance differs | preventive maintenance | expected life statistics | early fault detection | resource optimization | failure prediction | actual condition | main components | data collection | driving forces | manufacturing | productivity | equipment | necessary

Description:

Solution: Rugged Fiber Optic Temperature Sensors

With the currently available technologies Fiber Optic Temperature sensors stand out clearly to be the most suitable sensors for Emobility applications at higher voltages (250V+). The major benefits of Fiber optic Temperature sensors are:

  1. Safety: Fiber optics are safe – highest dielectric strength, ~1pC, tested up to 1500kV
  2. Noise: Sensor are immune to electric, chemical and magnetic environments. Being used without any isolation, in applications that has 1500kV+ voltage, up to 25 Tesla magnetic field and chemical environment ranging from 0 to 14pH without any interference to the sensory readings.
  3. Size: Ultra small sensors (Diameter of up to 0.4mm) to fit into tiniest spaces.
  4. Linearity: Fiber optic sensors transmit light signals through glass, the purest form of silica. The sensors are linear and does not need any compensation and special algorithms.
  5. Response Time: Fiber optic temperature system has a milliseconds response level. Response rate varies between 1ms to 200ms depending on the type of monitor selected for the application.
  6. Repeatability: Fiber Optic temperature sensors are very stable and repeatable over the entire range without getting influenced by and external fields.

Related Keyphrases:

available technologies Fiber Optic Temperature sensors | Fiber Optic Temperature SensorsWith | Fiber optic temperature system | Fiber optic sensors | Ultra small sensors | 25 Tesla magnetic field | Emobility applications | magnetic environments | suitable sensors | Response rate varies | chemical environment | dielectric strength | Fiber optics | external fields | response level