Related to "expected"

Description:

The Rugged Monitoring Tsens probes have been designed and built so they can be incorporated in your transformers to give precise results (direct measurements of temperature). The sensing technology is based on the proven zero-drift GaAs technology. They are completely built using first quality materials, all with very high dielectric strength, so your transformers can benefit from accurate temperature readings, which is essential to a good knowledge of transformer aging rate. During a factory heatrun tests these probes will give to both transformer manufacturer and operator invaluable information regarding the transformer expected MVA performance. The patented tip construction makes them extremely robust, while being very easy to install in radial spacers or in other pressboard material (such as for temperature measurements in yokes or other transformer components). The spiral-wrap cable is especially constructed to allow complete oil penetration so you can be assured that no air can be present. All materials used in the probe construction are compatible with high temperature kerosene desoprtion processes.

Related Keyphrases:

high temperature kerosene desoprtion processes | accurate temperature readings | operator invaluable information | allow complete oil penetration | temperature measurements | transformer manufacturer | high dielectric strength | transformer components | first quality materials | Monitoring Tsens probes | factory heatrun tests | direct measurements | probe construction | tip construction | GaAs technology

Description:

The Rugged Monitoring Tsens probes have been designed and built so they can be incorporated in your transformers to give precise results (direct measurements of temperature). The sensing technology is based on the proven zero-drift GaAs technology. They are completely built using first quality materials, all with very high dielectric strength, so your transformers can benefit from accurate temperature readings, which is essential to a good knowledge of transformer aging rate. During a factory heatrun tests these probes will give to both transformer manufacturer and operator invaluable information regarding the transformer expected MVA performance. The patented tip construction makes them extremely robust, while being very easy to install in radial spacers or in other pressboard material (such as for temperature measurements in yokes or other transformer components). The spiral-wrap cable is especially constructed to allow complete oil penetration so you can be assured that no air can be present. All materials used in the probe construction are compatible with high temperature kerosene desoprtion processes.

Related Keyphrases:

high temperature kerosene desoprtion processes | accurate temperature readings | operator invaluable information | allow complete oil penetration | temperature measurements | transformer manufacturer | high dielectric strength | transformer components | first quality materials | Monitoring Tsens probes | factory heatrun tests | direct measurements | probe construction | tip construction | GaAs technology

Description:

The Rugged Monitoring Tsens probes have been designed and built so they can be incorporated in your transformers to give precise results (direct measurements of temperature). The sensing technology is based on the proven zero-drift GaAs technology. They are completely built using first quality materials, all with very high dielectric strength, so your transformers can benefit from accurate temperature readings, which is essential to a good knowledge of transformer aging rate. During a factory heatrun tests these probes will give to both transformer manufacturer and operator invaluable information regarding the transformer expected MVA performance. The patented tip construction makes them extremely robust, while being very easy to install in radial spacers or in other pressboard material (such as for temperature measurements in yokes or other transformer components). The spiral-wrap cable is especially constructed to allow complete oil penetration so you can be assured that no air can be present. All materials used in the probe construction are compatible with high temperature kerosene desoprtion processes.

Related Keyphrases:

high temperature kerosene desoprtion processes | accurate temperature readings | operator invaluable information | allow complete oil penetration | temperature measurements | transformer manufacturer | high dielectric strength | transformer components | first quality materials | Monitoring Tsens probes | factory heatrun tests | direct measurements | probe construction | tip construction | GaAs technology

Description:

The Rugged Monitoring Tsens probes have been designed and built so they can be incorporated in your transformers to give precise results (direct measurements of temperature). The sensing technology is based on the proven zero-drift GaAs technology. They are completely built using first quality materials, all with very high dielectric strength, so your transformers can benefit from accurate temperature readings, which is essential to a good knowledge of transformer aging rate. During a factory heatrun tests these probes will give to both transformer manufacturer and operator invaluable information regarding the transformer expected MVA performance. The patented tip construction makes them extremely robust, while being very easy to install in radial spacers or in other pressboard material (such as for temperature measurements in yokes or other transformer components). The spiral-wrap cable is especially constructed to allow complete oil penetration so you can be assured that no air can be present. All materials used in the probe construction are compatible with high temperature kerosene desoprtion processes.

Related Keyphrases:

high temperature kerosene desoprtion processes | accurate temperature readings | operator invaluable information | allow complete oil penetration | temperature measurements | transformer manufacturer | high dielectric strength | transformer components | first quality materials | Monitoring Tsens probes | factory heatrun tests | direct measurements | probe construction | tip construction | GaAs technology

Description:

The Rugged Monitoring Tsens probes have been designed and built so they can be incorporated in your transformers to give precise results (direct measurements of temperature). The sensing technology is based on the proven zero-drift GaAs technology. They are completely built using first quality materials, all with very high dielectric strength, so your transformers can benefit from accurate temperature readings, which is essential to a good knowledge of transformer aging rate. During a factory heatrun tests these probes will give to both transformer manufacturer and operator invaluable information regarding the transformer expected MVA performance. The patented tip construction makes them extremely robust, while being very easy to install in radial spacers or in other pressboard material (such as for temperature measurements in yokes or other transformer components). The spiral-wrap cable is especially constructed to allow complete oil penetration so you can be assured that no air can be present. All materials used in the probe construction are compatible with high temperature kerosene desoprtion processes.

Related Keyphrases:

high temperature kerosene desoprtion processes | accurate temperature readings | operator invaluable information | allow complete oil penetration | temperature measurements | transformer manufacturer | high dielectric strength | transformer components | first quality materials | Monitoring Tsens probes | factory heatrun tests | direct measurements | probe construction | tip construction | GaAs technology

Description:

Predictive maintenance (PdM) techniques are designed to help determine the condition of in-service equipment in order to estimate when maintenance should be performed. This approach promises cost savings over routine or time-based preventive maintenance, because tasks are performed only when warranted. Thus, it is regarded as condition-based maintenance carried out as suggested by estimations of the degradation state of an item.[1][2] The main promise of predictive maintenance is to allow convenient scheduling of corrective maintenance, and to prevent unexpected equipment failures. The key is "the right information in the right time". By knowing which equipment needs maintenance, maintenance work can be better planned (spare parts, people, etc.) and what would have been "unplanned stops" are transformed to shorter and fewer "planned stops", thus increasing plant availability. Other potential advantages include increased equipment lifetime, increased plant safety, fewer accidents with negative impact on environment, and optimized spare parts handling.

Related Keyphrases:

prevent unexpected equipment failures | equipment needs maintenance | increased equipment lifetime | corrective maintenance | Predictive maintenance | preventive maintenance | maintenance work | increased plant safety | potential advantages | plant availability | right information | approach promises | degradation state | allow convenient | fewer accidents

Predictive maintenance differs from preventive maintenance because it relies on the actual condition of equipment, rather than average or expected life statistics, to predict when maintenance will be required.

Some of the main components that are necessary for implementing predictive maintenance are data collection and preprocessing, early fault detection, fault detection, time to failure prediction, maintenance scheduling and resource optimization.[3] Predictive maintenance has also been considered to be one of the driving forces for improving productivity and one of the ways to achieve "just-in-time" in manufacturing.[4]

Description:

Predictive maintenance differs from preventive maintenance because it relies on the actual condition of equipment, rather than average or expected life statistics, to predict when maintenance will be required.

Some of the main components that are necessary for implementing predictive maintenance are data collection and preprocessing, early fault detection, fault detection, time to failure prediction, maintenance scheduling and resource optimization.[3] Predictive maintenance has also been considered to be one of the driving forces for improving productivity and one of the ways to achieve "just-in-time" in manufacturing.[4]

Related Keyphrases:

Predictive maintenance differs | preventive maintenance | expected life statistics | early fault detection | resource optimization | failure prediction | actual condition | main components | data collection | driving forces | manufacturing | productivity | equipment | necessary