Related to "hassle free measurements"

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in demanding applications. The sensor offers complete immunity to RFI, EMI, NMR and microwave radiation. The standard temperature sensor has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, and the fiber tip has  0.3 mm x 0.3 mm area with a Polyimide coating. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and is immune to external fields. Therefore, the probes are explicitly suitable for use in large temperature ranges as well as in aggressive operating environments. The sensor length can be from several meters to 1 kilometer in length without impacting the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | standard temperature sensor | aggressive operating environments | repeatable measurements | fiber optic probe | large temperature | standard deviation | measurement result | sensor lengths | complete immunity | Gallium Arsenide | external fields | connector types | sensor tip | several meters

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in R&D and industrial applications. The sensor offers complete immunity to RFI, EMI, NMR, Corrosive and microwave radiation making it the best choice for all demanding applications. The standard temperature sensor has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, while the fiber tip has a diameter of 1.1mm and has a stainless steel ST-connector. For mechanical stability and applications e.g. in oil special protective coatings and hoses are available. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and immune to external fields, therefore probes are explicitly suitable for use in high temperature ranges as well as in aggressive operating environments. The sensor cable can be from several meters to kilometers long without influencing the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | sensor offers complete immunity | standard temperature sensor | aggressive operating environments | oil special protective coatings | industrial applications | repeatable measurements | fiber optic probe | mechanical stability | high temperature | microwave radiation | standard deviation | measurement result | sensor lengths | connector types

Description:

The Rugged Monitoring Tsens probes have been designed and built so they can be incorporated in your transformers to give precise results (direct measurements of temperature). The sensing technology is based on the proven zero-drift GaAs technology. They are completely built using first quality materials, all with very high dielectric strength, so your transformers can benefit from accurate temperature readings, which is essential to a good knowledge of transformer aging rate. During a factory heatrun tests these probes will give to both transformer manufacturer and operator invaluable information regarding the transformer expected MVA performance. The patented tip construction makes them extremely robust, while being very easy to install in radial spacers or in other pressboard material (such as for temperature measurements in yokes or other transformer components). The spiral-wrap cable is especially constructed to allow complete oil penetration so you can be assured that no air can be present. All materials used in the probe construction are compatible with high temperature kerosene desoprtion processes.

Related Keyphrases:

high temperature kerosene desoprtion processes | accurate temperature readings | operator invaluable information | allow complete oil penetration | temperature measurements | transformer manufacturer | high dielectric strength | transformer components | first quality materials | Monitoring Tsens probes | factory heatrun tests | direct measurements | probe construction | tip construction | GaAs technology

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in demanding applications. The sensor offers complete immunity to RFI, EMI, NMR and microwave radiation. The standard temperature sensor has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, and the fiber tip has  0.3 mm x 0.3 mm area with a Polyimide coating. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and is immune to external fields. Therefore, the probes are explicitly suitable for use in large temperature ranges as well as in aggressive operating environments. The sensor length can be from several meters to 1 kilometer in length without impacting the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | standard temperature sensor | aggressive operating environments | repeatable measurements | fiber optic probe | large temperature | standard deviation | measurement result | sensor lengths | complete immunity | Gallium Arsenide | external fields | connector types | sensor tip | several meters

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in demanding applications. The sensor offers complete immunity to RFI, EMI, NMR and microwave radiation. The standard temperature sensor has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, and the fiber tip has  0.3 mm x 0.3 mm area with a Polyimide coating. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and is immune to external fields. Therefore, the probes are explicitly suitable for use in large temperature ranges as well as in aggressive operating environments. The sensor length can be from several meters to 1 kilometer in length without impacting the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | standard temperature sensor | aggressive operating environments | repeatable measurements | fiber optic probe | large temperature | standard deviation | measurement result | sensor lengths | complete immunity | Gallium Arsenide | external fields | connector types | sensor tip | several meters

Description:

The Rugged Monitoring Tsens probes have been designed and built so they can be incorporated in your transformers to give precise results (direct measurements of temperature). The sensing technology is based on the proven zero-drift GaAs technology. They are completely built using first quality materials, all with very high dielectric strength, so your transformers can benefit from accurate temperature readings, which is essential to a good knowledge of transformer aging rate. During a factory heatrun tests these probes will give to both transformer manufacturer and operator invaluable information regarding the transformer expected MVA performance. The patented tip construction makes them extremely robust, while being very easy to install in radial spacers or in other pressboard material (such as for temperature measurements in yokes or other transformer components). The spiral-wrap cable is especially constructed to allow complete oil penetration so you can be assured that no air can be present. All materials used in the probe construction are compatible with high temperature kerosene desoprtion processes.

Related Keyphrases:

high temperature kerosene desoprtion processes | accurate temperature readings | operator invaluable information | allow complete oil penetration | temperature measurements | transformer manufacturer | high dielectric strength | transformer components | first quality materials | Monitoring Tsens probes | factory heatrun tests | direct measurements | probe construction | tip construction | GaAs technology

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in R&D and industrial applications. The sensor offers complete immunity to RFI, EMI, NMR, Corrosive and microwave radiation making it the best choice for all demanding applications. The standard temperature sensor has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, while the fiber tip has a diameter of 1.1mm and has a stainless steel ST-connector. For mechanical stability and applications e.g. in oil special protective coatings and hoses are available. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and immune to external fields, therefore probes are explicitly suitable for use in high temperature ranges as well as in aggressive operating environments. The sensor cable can be from several meters to kilometers long without influencing the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | sensor offers complete immunity | standard temperature sensor | aggressive operating environments | oil special protective coatings | industrial applications | repeatable measurements | fiber optic probe | mechanical stability | high temperature | microwave radiation | standard deviation | measurement result | sensor lengths | connector types

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in demanding applications. The sensor offers complete immunity to RFI, EMI, NMR and microwave radiation. The standard temperature sensor  has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows for precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, and the fiber tip has a diameter of 1.7 mm with Rugged Polyimide coating and has a stainless steel ST-connector. For mechanical stability and applications e.g. in oil special protective coatings and hoses are available. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and immune to external fields, therefore probes are explicitly suitable for the use in high temperature ranges as well as in aggressive operating environments. The sensor cable can be from  several meters to kilometers long without influencing the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | standard temperature sensor | aggressive operating environments | oil special protective coatings | repeatable measurements | fiber optic probe | mechanical stability | high temperature | standard deviation | measurement result | sensor lengths | complete immunity | sensor cable | connector types | Gallium Arsenide

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in demanding applications. The sensor offers complete immunity to RFI, EMI, NMR and microwave radiation. The standard temperature sensor has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, and the fiber tip has  0.3 mm x 0.3 mm area with a Polyimide coating. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and is immune to external fields. Therefore, the probes are explicitly suitable for use in large temperature ranges as well as in aggressive operating environments. The sensor length can be from several meters to 1 kilometer in length without impacting the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | standard temperature sensor | aggressive operating environments | repeatable measurements | fiber optic probe | large temperature | standard deviation | measurement result | sensor lengths | complete immunity | Gallium Arsenide | external fields | connector types | sensor tip | several meters

Description:

The Rugged Monitoring Tsens probes have been designed and built so they can be incorporated in your transformers to give precise results (direct measurements of temperature). The sensing technology is based on the proven zero-drift GaAs technology. They are completely built using first quality materials, all with very high dielectric strength, so your transformers can benefit from accurate temperature readings, which is essential to a good knowledge of transformer aging rate. During a factory heatrun tests these probes will give to both transformer manufacturer and operator invaluable information regarding the transformer expected MVA performance. The patented tip construction makes them extremely robust, while being very easy to install in radial spacers or in other pressboard material (such as for temperature measurements in yokes or other transformer components). The spiral-wrap cable is especially constructed to allow complete oil penetration so you can be assured that no air can be present. All materials used in the probe construction are compatible with high temperature kerosene desoprtion processes.

Related Keyphrases:

high temperature kerosene desoprtion processes | accurate temperature readings | operator invaluable information | allow complete oil penetration | temperature measurements | transformer manufacturer | high dielectric strength | transformer components | first quality materials | Monitoring Tsens probes | factory heatrun tests | direct measurements | probe construction | tip construction | GaAs technology

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in R&D and industrial applications. The sensor offers complete immunity to RFI, EMI, NMR, Corrosive and microwave radiation making it the best choice for all demanding applications. The standard temperature sensor has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, while the fiber tip has a diameter of 1.1mm and has a stainless steel ST-connector. For mechanical stability and applications e.g. in oil special protective coatings and hoses are available. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and immune to external fields, therefore probes are explicitly suitable for use in high temperature ranges as well as in aggressive operating environments. The sensor cable can be from several meters to kilometers long without influencing the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | sensor offers complete immunity | standard temperature sensor | aggressive operating environments | oil special protective coatings | industrial applications | repeatable measurements | fiber optic probe | mechanical stability | high temperature | microwave radiation | standard deviation | measurement result | sensor lengths | connector types

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in R&D and industrial applications. The sensor offers complete immunity to RFI, EMI, NMR, Corrosive and microwave radiation making it the best choice for all demanding applications. The standard temperature sensor has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, while the fiber tip has a diameter of 1.1mm and has a stainless steel ST-connector. For mechanical stability and applications e.g. in oil special protective coatings and hoses are available. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and immune to external fields, therefore probes are explicitly suitable for use in high temperature ranges as well as in aggressive operating environments. The sensor cable can be from several meters to kilometers long without influencing the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | sensor offers complete immunity | standard temperature sensor | aggressive operating environments | oil special protective coatings | industrial applications | repeatable measurements | fiber optic probe | mechanical stability | high temperature | microwave radiation | standard deviation | measurement result | sensor lengths | connector types

Description:

The Rugged Monitoring Tsens probes have been designed and built so they can be incorporated in your transformers to give precise results (direct measurements of temperature). The sensing technology is based on the proven zero-drift GaAs technology. They are completely built using first quality materials, all with very high dielectric strength, so your transformers can benefit from accurate temperature readings, which is essential to a good knowledge of transformer aging rate. During a factory heatrun tests these probes will give to both transformer manufacturer and operator invaluable information regarding the transformer expected MVA performance. The patented tip construction makes them extremely robust, while being very easy to install in radial spacers or in other pressboard material (such as for temperature measurements in yokes or other transformer components). The spiral-wrap cable is especially constructed to allow complete oil penetration so you can be assured that no air can be present. All materials used in the probe construction are compatible with high temperature kerosene desoprtion processes.

Related Keyphrases:

high temperature kerosene desoprtion processes | accurate temperature readings | operator invaluable information | allow complete oil penetration | temperature measurements | transformer manufacturer | high dielectric strength | transformer components | first quality materials | Monitoring Tsens probes | factory heatrun tests | direct measurements | probe construction | tip construction | GaAs technology

Description:

A heavy duty fiber optic temperature sensor specially designed for harsh and dynamic operating conditions where stress on the Fiber Optic Cable is more than normal. The sensor offers complete immunity to RFI, EMI, NMR, Corrosive and microwave radiation making it the best choice for all demanding applications. The standard temperature sensor has a response time of 0.2 s. with a standard deviation of +/-0.2 °C. Each sensor allows precise and repeatable measurements. The coating of the temperature sensor is made of heavy duty material, while the fiber tip has a diameter of 1.1mm and has a stainless steel ST-connector. For mechanical stability and applications e.g. in oil special protective coatings and hoses are available. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and immune to external fields, therefore probes are explicitly suitable for use in high temperature ranges as well as in aggressive operating environments. The sensor cable can be from several meters to kilometers long without influencing the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

heavy duty fiber optic temperature sensor | sensor offers complete immunity | standard temperature sensor | aggressive operating environments | oil special protective coatings | dynamic operating conditions | repeatable measurements | heavy duty material | fiber optic probe | mechanical stability | high temperature | microwave radiation | sensor lengths | standard deviation | measurement result

Description:

The Rugged Monitoring Tsens probes have been designed and built so they can be incorporated in your transformers to give precise results (direct measurements of temperature). The sensing technology is based on the proven zero-drift GaAs technology. They are completely built using first quality materials, all with very high dielectric strength, so your transformers can benefit from accurate temperature readings, which is essential to a good knowledge of transformer aging rate. During a factory heatrun tests these probes will give to both transformer manufacturer and operator invaluable information regarding the transformer expected MVA performance. The patented tip construction makes them extremely robust, while being very easy to install in radial spacers or in other pressboard material (such as for temperature measurements in yokes or other transformer components). The spiral-wrap cable is especially constructed to allow complete oil penetration so you can be assured that no air can be present. All materials used in the probe construction are compatible with high temperature kerosene desoprtion processes.

Related Keyphrases:

high temperature kerosene desoprtion processes | accurate temperature readings | operator invaluable information | allow complete oil penetration | temperature measurements | transformer manufacturer | high dielectric strength | transformer components | first quality materials | Monitoring Tsens probes | factory heatrun tests | direct measurements | probe construction | tip construction | GaAs technology

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in R&D and industrial applications. The sensor offers complete immunity to RFI, EMI, NMR, Corrosive and microwave radiation making it the best choice for all demanding applications. The standard temperature sensor has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, while the fiber tip has a diameter of 1.1mm and has a stainless steel ST-connector. For mechanical stability and applications e.g. in oil special protective coatings and hoses are available. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and immune to external fields, therefore probes are explicitly suitable for use in high temperature ranges as well as in aggressive operating environments. The sensor cable can be from several meters to kilometers long without influencing the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | sensor offers complete immunity | standard temperature sensor | aggressive operating environments | oil special protective coatings | industrial applications | repeatable measurements | fiber optic probe | mechanical stability | high temperature | microwave radiation | standard deviation | measurement result | sensor lengths | connector types

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in demanding applications. The sensor offers complete immunity to RFI, EMI, NMR and microwave radiation. The standard temperature sensor  has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows for precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, and the fiber tip has a diameter of 1.7 mm with Rugged Polyimide coating and has a stainless steel ST-connector. For mechanical stability and applications e.g. in oil special protective coatings and hoses are available. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and immune to external fields, therefore probes are explicitly suitable for the use in high temperature ranges as well as in aggressive operating environments. The sensor cable can be from  several meters to kilometers long without influencing the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | standard temperature sensor | aggressive operating environments | oil special protective coatings | repeatable measurements | fiber optic probe | mechanical stability | high temperature | standard deviation | measurement result | sensor lengths | complete immunity | sensor cable | connector types | Gallium Arsenide

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in demanding applications. The sensor offers complete immunity to RFI, EMI, NMR and microwave radiation. The standard temperature sensor has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, and the fiber tip has  0.3 mm x 0.3 mm area with a Polyimide coating. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and is immune to external fields. Therefore, the probes are explicitly suitable for use in large temperature ranges as well as in aggressive operating environments. The sensor length can be from several meters to 1 kilometer in length without impacting the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | standard temperature sensor | aggressive operating environments | repeatable measurements | fiber optic probe | large temperature | standard deviation | measurement result | sensor lengths | complete immunity | Gallium Arsenide | external fields | connector types | sensor tip | several meters

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in demanding applications. The sensor offers complete immunity to RFI, EMI, NMR and microwave radiation. The standard temperature sensor has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, and the fiber tip has  0.3 mm x 0.3 mm area with a Polyimide coating. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and is immune to external fields. Therefore, the probes are explicitly suitable for use in large temperature ranges as well as in aggressive operating environments. The sensor length can be from several meters to 1 kilometer in length without impacting the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | standard temperature sensor | aggressive operating environments | repeatable measurements | fiber optic probe | large temperature | standard deviation | measurement result | sensor lengths | complete immunity | Gallium Arsenide | external fields | connector types | sensor tip | several meters

Description:

A multiuse fiber optic temperature sensor designed for a wide range of applications, especially for the use in demanding applications. The sensor offers complete immunity to RFI, EMI, NMR and microwave radiation. The standard temperature sensor has a response time of 0.2 s. With a standard deviation of +/-0.2 °C it allows precise and repeatable measurements. The coating of the temperature sensor is made of PTFE, and the fiber tip has  0.3 mm x 0.3 mm area with a Polyimide coating. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and is immune to external fields. Therefore, the probes are explicitly suitable for use in large temperature ranges as well as in aggressive operating environments. The sensor length can be from several meters to 1 kilometer in length without impacting the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multiuse fiber optic temperature sensor | standard temperature sensor | aggressive operating environments | repeatable measurements | fiber optic probe | large temperature | standard deviation | measurement result | sensor lengths | complete immunity | Gallium Arsenide | external fields | connector types | sensor tip | several meters

Description:

A multi use fiber optic temperature sensor designed for a wide range of applications, especially for the use in demanding applications, Sensor offers complete immunity to RFI, EMI, NMR and microwave radiation. The standard temperature sensor has a response time of 0.2s. With a standard deviation of +/-0.2°C it allows precise and repeatable measurements. The coating of temperature sensor is made of PTFE, the fiber tip has a diameter of 0.7mm with Polyimid coating and has a stainless steel ST-connector. For mechanical stability and applications e.g. in oil special protective coatings and hoses are available. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and immune to external fields, therefore probes are explicit suitable for the use in high temperature ranges as well as in aggressive operating environments. The sensor cable can be from several meters to kilometers long without influencing the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

multi use fiber optic temperature sensor | standard temperature sensor | aggressive operating environments | oil special protective coatings | repeatable measurements | fiber optic probe | mechanical stability | high temperature | standard deviation | measurement result | complete immunity | sensor lengths | connector types | Gallium Arsenide | external fields

Thermocouples are widely used in automotive industry for temperature testing at product design and EOL (End of Line) stages and for permanent monitoring afterwards. However, with the increasing voltage levels in Emobility thermocouples possess many risks in product design and testing stages. Some of them are safety related risk and have potential to be life threatening for employees (research and test engineers).

Thermocouples are based on the principles, that a small voltage (in milli-volts) gets produced when a junction (joint) of two dissimilar metal wires is cooled or heated. The generated voltage signal is measured at the other end of the metal wires and calibrated for the temperature range. During the temperature testing the junction end is put on the test object and voltage is being measured at the other end to estimate the temperature of test object.

Now imagine if the two metal wires are put on the 1000 V Battery or Motor for temperature testing and somehow the test engineers touch the wire by mistake. Even worse how accurate will be the milli-volt signal when it passes through an environment where there is high electric and magnetic field.

Without getting into more technicality let us take a closer look on the common reasons why thermocouples have failed in Emobility testing and should be replaced with intrinsically safe sensors.

1. Safety

It is very obvious and common sensical thing to find out the safety risk of using thermocouples in Emobility testing, especially when test engineers have to adjust sensing location such as finding the right hot spot or reach to the measuring points that are not easily accessible (Inverters, Stator Windings, Battery Cooling duct). Thermocouples are subject to creating a short circuit and electrocution risks to the employees.


2. Noise

With the Emobility going towards 1000V and even higher 2500V (for commercial vehicles), thermocouples are highly susceptible to noise. The milli-volt signal requires lot of isolation under such large voltages and even then, the signal is not clear enough to measure accurate temperature.



3. Larger Size  

Thermocouples are not suitable for Emobility applications that has very tiny space for putting sensors such as Charging Points, Invertor IGBTs, Battery Inter-cell temperature measurement etc. It has been observed that thermocouples are less responsive and inaccurate (up to 20 to 30 Deg Celsius) if they are not put directly on the charging points. 


4. Non-Linearity Over The Range  

Though the thermocouples are calibrated for a certain range, they still need complex compensation algorithm to maintain linearity over the range since they are being used at harsh conditions (High electric, chemical and magnetic fields) and different test environments.



5. Longer Response Time  

Faster and accurate measurement is critical for Emobility during the performance, life cycle and abuse testing. Not only the accuracy, thermocouples are also limited by the response time requirements of Emobility applications such as detection of Thermal Runaway Issues, Charging Point Temperature, Stator Winding Temperature etc.


6. Poor Repeatability 

Thermocouples are made of two dissimilar metallic wires and susceptive to material purity which varies from batch to batch and manufacturer to manufacturer. This variation creates calibration issues resulting into non-repeatability of accurate measurements. Further the chemical composition of metal changes with time especially if they are put into chemical environment like Batteries.


Description:

Thermocouples are widely used in automotive industry for temperature testing at product design and EOL (End of Line) stages and for permanent monitoring afterwards. However, with the increasing voltage levels in Emobility thermocouples possess many risks in product design and testing stages. Some of them are safety related risk and have potential to be life threatening for employees (research and test engineers).

Thermocouples are based on the principles, that a small voltage (in milli-volts) gets produced when a junction (joint) of two dissimilar metal wires is cooled or heated. The generated voltage signal is measured at the other end of the metal wires and calibrated for the temperature range. During the temperature testing the junction end is put on the test object and voltage is being measured at the other end to estimate the temperature of test object.

Now imagine if the two metal wires are put on the 1000 V Battery or Motor for temperature testing and somehow the test engineers touch the wire by mistake. Even worse how accurate will be the milli-volt signal when it passes through an environment where there is high electric and magnetic field.

Without getting into more technicality let us take a closer look on the common reasons why thermocouples have failed in Emobility testing and should be replaced with intrinsically safe sensors.

1. Safety

It is very obvious and common sensical thing to find out the safety risk of using thermocouples in Emobility testing, especially when test engineers have to adjust sensing location such as finding the right hot spot or reach to the measuring points that are not easily accessible (Inverters, Stator Windings, Battery Cooling duct). Thermocouples are subject to creating a short circuit and electrocution risks to the employees.


2. Noise

With the Emobility going towards 1000V and even higher 2500V (for commercial vehicles), thermocouples are highly susceptible to noise. The milli-volt signal requires lot of isolation under such large voltages and even then, the signal is not clear enough to measure accurate temperature.



3. Larger Size  

Thermocouples are not suitable for Emobility applications that has very tiny space for putting sensors such as Charging Points, Invertor IGBTs, Battery Inter-cell temperature measurement etc. It has been observed that thermocouples are less responsive and inaccurate (up to 20 to 30 Deg Celsius) if they are not put directly on the charging points. 


4. Non-Linearity Over The Range  

Though the thermocouples are calibrated for a certain range, they still need complex compensation algorithm to maintain linearity over the range since they are being used at harsh conditions (High electric, chemical and magnetic fields) and different test environments.



5. Longer Response Time  

Faster and accurate measurement is critical for Emobility during the performance, life cycle and abuse testing. Not only the accuracy, thermocouples are also limited by the response time requirements of Emobility applications such as detection of Thermal Runaway Issues, Charging Point Temperature, Stator Winding Temperature etc.


6. Poor Repeatability 

Thermocouples are made of two dissimilar metallic wires and susceptive to material purity which varies from batch to batch and manufacturer to manufacturer. This variation creates calibration issues resulting into non-repeatability of accurate measurements. Further the chemical composition of metal changes with time especially if they are put into chemical environment like Batteries.


Related Keyphrases:

two dissimilar metal wires | two dissimilar metallic wires | Emobility thermocouples | permanent monitoring afterwards | generated voltage signal | temperature measurement | complex compensation algorithm | Emobility applications | Stator Winding Temperature | Charging Point Temperature | response time requirements | test engineers touch | temperature range | accurate measurements | accurate measurement

Description:

Why Wood drying

In the wood industry, wood is dried

• Remove moisture

• Improve structural integrity to avoid damage from shrinkage

• Control the color, shape

• Elimination of living organisms like insects and parasites.

Advantages of Microwave/RF Drying

• Fast drying ( 2 days in a Kiln instead of 2 month in the back yard ) 

• The most homogeneous drying process

• Minimize danger of cracks, shape and changing the color of wood

• Avoiding burning the center of the beam


Chemical free

• Methyl bromide (MeBr) has been widely used to decontaminate wood infected by living organisms.

• MeBr is highly toxic and depletes the stratospheric ozone layer, the use of Microwave is non toxic and eco friendly

Typical Customers

• Wood processors

• Wood Exporters

• Furniture manufacturers

• Shipping material providers

Advantages of Fiber Optics

Fiber optic monitoring in wood drying provides significant benefits to traditional methods

• Test certificates for customer specification compliance

• Fiber optic sensors are immune to RF/ Microwave

• Avoid RF waves burning the center of the beam

• Continuous Monitoring for quality control

Advantages of Fiber Optics

Fiber optic monitoring in wood drying provides significant benefits to traditional methods


• Sensors 

• Monitors

• Softwarea






Related Keyphrases:

Fiber OpticsFiber optic monitoring | customer specification compliance | Improve structural integrity | material providersAdvantages | stratospheric ozone layer | friendlyTypical Customers | quality controlAdvantages | decontaminate wood | Fiber optic sensors | Furniture manufacturers | significant benefits | Continuous Monitoring | traditional methods | bull | wood industry

Description:

Temperature management is one of the most important part in the design, development and testing process of electric / hybrid vehicles. The performance and aging of all critical components of electric vehicle highly depend on the temperature distribution and developing hot spots within. Therefore,  faster and accurate temperature measurement is necessary at each stage of EV product development e.g. individual component level testing for identifying performance limits and temperature behavior of individual components, and fully assembled electric vehicles to ensure the overall performance and safety.

Electric / Hybrid vehicle design and architecture differs a lot from the traditional Petrol and Diesel vehicles. The shift from low voltage to high voltage (up to 1000V) connections and operations within the similar vehicle space (or some time lesser space) bring challenges in terms of safety, limited access and electromagnetic noise issues during testing and measurements. Fiber Optic technology based sensors e.g. Fiber Optic Temperature sensors are becoming more and more popular in testing Electric / Hybrid vehicles due to their immunity to electromagnetic field, ruggedness, smaller size, faster response, high accuracy and safety of operation.

Related Keyphrases:

Fiber Optic Temperature sensors | accurate temperature measurement | electromagnetic noise issues | individual component level | temperature distribution | Hybrid vehicle design | Fiber Optic technology | similar vehicle space | individual components | Temperature management | EV product development | Hybrid vehicles due | electric vehicles | electromagnetic field | overall performance

Telemetry is an automated communications process by which measurements and other data are collected at remote or inaccessible points and transmitted to receiving equipment for monitoring.[1] The word is derived from Greek roots: tele = remote, and metron = measure. Systems that need external instructions and data to operate require the counterpart of telemetry, telecommand.[2]

Although the term commonly refers to wireless data transfer mechanisms (e.g., using radio, ultrasonic, or infrared systems), it also encompasses data transferred over other media such as a telephone or computer network, optical link or other wired communications like power line carriers. Many modern telemetry systems take advantage of the low cost and ubiquity of GSM networks by using SMS to receive and transmit telemetry data.

telemeter is a device used to remotely measure any quantity. It consists of a sensor, a transmission path, and a display, recording, or control device. Telemeters are the physical devices used in telemetry. Electronic devices are widely used in telemetry and can be wireless or hard-wired, analog or digital. Other technologies are also possible, such as mechanical, hydraulic and optical.[3]

Telemetry may be commutated to allow the transmission of multiple data streams in a fixed frame.

Description:

Telemetry is an automated communications process by which measurements and other data are collected at remote or inaccessible points and transmitted to receiving equipment for monitoring.[1] The word is derived from Greek roots: tele = remote, and metron = measure. Systems that need external instructions and data to operate require the counterpart of telemetry, telecommand.[2]

Although the term commonly refers to wireless data transfer mechanisms (e.g., using radio, ultrasonic, or infrared systems), it also encompasses data transferred over other media such as a telephone or computer network, optical link or other wired communications like power line carriers. Many modern telemetry systems take advantage of the low cost and ubiquity of GSM networks by using SMS to receive and transmit telemetry data.

telemeter is a device used to remotely measure any quantity. It consists of a sensor, a transmission path, and a display, recording, or control device. Telemeters are the physical devices used in telemetry. Electronic devices are widely used in telemetry and can be wireless or hard-wired, analog or digital. Other technologies are also possible, such as mechanical, hydraulic and optical.[3]

Telemetry may be commutated to allow the transmission of multiple data streams in a fixed frame.

Related Keyphrases:

wireless data transfer mechanisms | Many modern telemetry systems | multiple data streams | communications process | transmit telemetry | external instructions | Electronic devices | inaccessible points | power line carriers | transmission path | physical devices | computer network | control device | communications | optical link

Description:

Why Wood drying: In the wood industry, wood is dried     


  • Remove moisture 
  • Improve structural integrity to avoid damage from shrinkage    
  • Control the color, shape    
  • Elimination of living organisms like insects and parasites.

Advantages of Microwave/RF Drying:    


  • Fast drying ( 2 days in a Kiln instead of 2 month in the back yard )
  • The most homogeneous drying process
  • Minimize danger of cracks, shape and changing the color of wood    
  • Avoiding burning the center of the beam  

Chemical free     


  • Methyl bromide (MeBr) has been widely used to decontaminate wood infected by living organisms.
  • MeBr is highly toxic and depletes the stratospheric ozone layer, the use of Microwave is non toxic and eco friendly 

Typical Costomers


  • Wood Processors
  • Wood Exporters
  • Furniture Manufacturers
  • Shipping Material Provider

Related Keyphrases:

Typical CostomersWood ProcessorsWood ExportersFurniture ManufacturersShipping Material Provider | Improve structural integrity | stratospheric ozone layer | processMinimize danger | decontaminate wood | nbsp | living organisms | wood industry | Remove moisture | Methyl bromide | decontaminate | Chemical free | stratospheric | avoid damage | homogeneous