Related to "non"


Congratulations! you have completed the first step of the competition.

Now, the good news is for those who want to explore your writing skills in technical areas. With the intent of promoting advance sensor awareness among the younger generation, Rugged Monitoring is launching a young talent competition on technical writing. The objective of the competition is to encourage people in learning about new sensing technologies and be creative in writing technical blogs and articles.


The details of the competition are as follows: 


Start Date:  Aug 20th 2019


What’s next?


1)   Visit our page - Done

2)   Choose the topic

3)   Follow Instructions

4)   Simply submit to info@ruggedmonitoring.com


       Topics to Choose

i.    Switchgear temperature monitoring using Fiber Optic Temperature Sensors

ii.   Applications of Fiber Optic Temperature sensors in Semiconductor Industry

iii.   Advantages of Fiber Optic Temperature Sensors in Microwave heating

iv.   Applications of Fiber Optic Temperature sensors in the Medical Industry


Instructions


i.    Written in good and readable English

ii.   Must be related to any one of the topics listed above.

iii.   Must cover the application and benefit of Fiber Optic Temperature Monitoring.

iv.   Must have a minimum of 600 words. Pictures or diagrams are useful and welcomed

v.   Must be original and free from plagiarism. A plagiarism check will be performed on all articles

vi.   Must be grammar error-free.

vii.  For reference - please visit our Blog and solutions page.

viii. Follow us on LinkedIn and Facebook for the latest updates on the competition and its results.


Last date for submission: Aug 31st 2019

Winner Announcement:  Sep 9th 2019


Benefits 


i.    Get a chance to participate in future blog content writing requirements

ii.   Get a chance to interact with our technical team for your queries.

iii.   A digital talent certificate from our Organization.

Description:


Congratulations! you have completed the first step of the competition.

Now, the good news is for those who want to explore your writing skills in technical areas. With the intent of promoting advance sensor awareness among the younger generation, Rugged Monitoring is launching a young talent competition on technical writing. The objective of the competition is to encourage people in learning about new sensing technologies and be creative in writing technical blogs and articles.


The details of the competition are as follows: 


Start Date:  Aug 20th 2019


What’s next?


1)   Visit our page - Done

2)   Choose the topic

3)   Follow Instructions

4)   Simply submit to info@ruggedmonitoring.com


       Topics to Choose

i.    Switchgear temperature monitoring using Fiber Optic Temperature Sensors

ii.   Applications of Fiber Optic Temperature sensors in Semiconductor Industry

iii.   Advantages of Fiber Optic Temperature Sensors in Microwave heating

iv.   Applications of Fiber Optic Temperature sensors in the Medical Industry


Instructions


i.    Written in good and readable English

ii.   Must be related to any one of the topics listed above.

iii.   Must cover the application and benefit of Fiber Optic Temperature Monitoring.

iv.   Must have a minimum of 600 words. Pictures or diagrams are useful and welcomed

v.   Must be original and free from plagiarism. A plagiarism check will be performed on all articles

vi.   Must be grammar error-free.

vii.  For reference - please visit our Blog and solutions page.

viii. Follow us on LinkedIn and Facebook for the latest updates on the competition and its results.


Last date for submission: Aug 31st 2019

Winner Announcement:  Sep 9th 2019


Benefits 


i.    Get a chance to participate in future blog content writing requirements

ii.   Get a chance to interact with our technical team for your queries.

iii.   A digital talent certificate from our Organization.

Related Keyphrases:

Fiber Optic Temperature Sensorsii | Aug 31st 2019Winner Announcement | young talent competition | Medical IndustryInstructionsi | digital talent certificate | Semiconductor Industryiii | nbsp | advance sensor awareness | Follow Instructions4 | Sep 9th 2019Benefits | Microwave heatingiv | future blog content | Aug 20th 2019What | technical blogs

Thermocouples are widely used in automotive industry for temperature testing at product design and EOL (End of Line) stages and for permanent monitoring afterwards. However, with the increasing voltage levels in Emobility thermocouples possess many risks in product design and testing stages. Some of them are safety related risk and have potential to be life threatening for employees (research and test engineers).

Thermocouples are based on the principles, that a small voltage (in milli-volts) gets produced when a junction (joint) of two dissimilar metal wires is cooled or heated. The generated voltage signal is measured at the other end of the metal wires and calibrated for the temperature range. During the temperature testing the junction end is put on the test object and voltage is being measured at the other end to estimate the temperature of test object.

Now imagine if the two metal wires are put on the 1000 V Battery or Motor for temperature testing and somehow the test engineers touch the wire by mistake. Even worse how accurate will be the milli-volt signal when it passes through an environment where there is high electric and magnetic field.

Without getting into more technicality let us take a closer look on the common reasons why thermocouples have failed in Emobility testing and should be replaced with intrinsically safe sensors.

1. Safety

It is very obvious and common sensical thing to find out the safety risk of using thermocouples in Emobility testing, especially when test engineers have to adjust sensing location such as finding the right hot spot or reach to the measuring points that are not easily accessible (Inverters, Stator Windings, Battery Cooling duct). Thermocouples are subject to creating a short circuit and electrocution risks to the employees.


2. Noise

With the Emobility going towards 1000V and even higher 2500V (for commercial vehicles), thermocouples are highly susceptible to noise. The milli-volt signal requires lot of isolation under such large voltages and even then, the signal is not clear enough to measure accurate temperature.



3. Larger Size  

Thermocouples are not suitable for Emobility applications that has very tiny space for putting sensors such as Charging Points, Invertor IGBTs, Battery Inter-cell temperature measurement etc. It has been observed that thermocouples are less responsive and inaccurate (up to 20 to 30 Deg Celsius) if they are not put directly on the charging points. 


4. Non-Linearity Over The Range  

Though the thermocouples are calibrated for a certain range, they still need complex compensation algorithm to maintain linearity over the range since they are being used at harsh conditions (High electric, chemical and magnetic fields) and different test environments.



5. Longer Response Time  

Faster and accurate measurement is critical for Emobility during the performance, life cycle and abuse testing. Not only the accuracy, thermocouples are also limited by the response time requirements of Emobility applications such as detection of Thermal Runaway Issues, Charging Point Temperature, Stator Winding Temperature etc.


6. Poor Repeatability 

Thermocouples are made of two dissimilar metallic wires and susceptive to material purity which varies from batch to batch and manufacturer to manufacturer. This variation creates calibration issues resulting into non-repeatability of accurate measurements. Further the chemical composition of metal changes with time especially if they are put into chemical environment like Batteries.


Description:

Thermocouples are widely used in automotive industry for temperature testing at product design and EOL (End of Line) stages and for permanent monitoring afterwards. However, with the increasing voltage levels in Emobility thermocouples possess many risks in product design and testing stages. Some of them are safety related risk and have potential to be life threatening for employees (research and test engineers).

Thermocouples are based on the principles, that a small voltage (in milli-volts) gets produced when a junction (joint) of two dissimilar metal wires is cooled or heated. The generated voltage signal is measured at the other end of the metal wires and calibrated for the temperature range. During the temperature testing the junction end is put on the test object and voltage is being measured at the other end to estimate the temperature of test object.

Now imagine if the two metal wires are put on the 1000 V Battery or Motor for temperature testing and somehow the test engineers touch the wire by mistake. Even worse how accurate will be the milli-volt signal when it passes through an environment where there is high electric and magnetic field.

Without getting into more technicality let us take a closer look on the common reasons why thermocouples have failed in Emobility testing and should be replaced with intrinsically safe sensors.

1. Safety

It is very obvious and common sensical thing to find out the safety risk of using thermocouples in Emobility testing, especially when test engineers have to adjust sensing location such as finding the right hot spot or reach to the measuring points that are not easily accessible (Inverters, Stator Windings, Battery Cooling duct). Thermocouples are subject to creating a short circuit and electrocution risks to the employees.


2. Noise

With the Emobility going towards 1000V and even higher 2500V (for commercial vehicles), thermocouples are highly susceptible to noise. The milli-volt signal requires lot of isolation under such large voltages and even then, the signal is not clear enough to measure accurate temperature.



3. Larger Size  

Thermocouples are not suitable for Emobility applications that has very tiny space for putting sensors such as Charging Points, Invertor IGBTs, Battery Inter-cell temperature measurement etc. It has been observed that thermocouples are less responsive and inaccurate (up to 20 to 30 Deg Celsius) if they are not put directly on the charging points. 


4. Non-Linearity Over The Range  

Though the thermocouples are calibrated for a certain range, they still need complex compensation algorithm to maintain linearity over the range since they are being used at harsh conditions (High electric, chemical and magnetic fields) and different test environments.



5. Longer Response Time  

Faster and accurate measurement is critical for Emobility during the performance, life cycle and abuse testing. Not only the accuracy, thermocouples are also limited by the response time requirements of Emobility applications such as detection of Thermal Runaway Issues, Charging Point Temperature, Stator Winding Temperature etc.


6. Poor Repeatability 

Thermocouples are made of two dissimilar metallic wires and susceptive to material purity which varies from batch to batch and manufacturer to manufacturer. This variation creates calibration issues resulting into non-repeatability of accurate measurements. Further the chemical composition of metal changes with time especially if they are put into chemical environment like Batteries.


Related Keyphrases:

two dissimilar metal wires | two dissimilar metallic wires | Emobility thermocouples | permanent monitoring afterwards | generated voltage signal | temperature measurement | complex compensation algorithm | Emobility applications | Stator Winding Temperature | Charging Point Temperature | response time requirements | test engineers touch | temperature range | accurate measurements | accurate measurement

Description:

Related Keyphrases:

monitoring | xyz

Predictive maintenance differs from preventive maintenance because it relies on the actual condition of equipment, rather than average or expected life statistics, to predict when maintenance will be required.

Some of the main components that are necessary for implementing predictive maintenance are data collection and preprocessing, early fault detection, fault detection, time to failure prediction, maintenance scheduling and resource optimization.[3] Predictive maintenance has also been considered to be one of the driving forces for improving productivity and one of the ways to achieve "just-in-time" in manufacturing.[4]

Description:

Predictive maintenance differs from preventive maintenance because it relies on the actual condition of equipment, rather than average or expected life statistics, to predict when maintenance will be required.

Some of the main components that are necessary for implementing predictive maintenance are data collection and preprocessing, early fault detection, fault detection, time to failure prediction, maintenance scheduling and resource optimization.[3] Predictive maintenance has also been considered to be one of the driving forces for improving productivity and one of the ways to achieve "just-in-time" in manufacturing.[4]

Related Keyphrases:

Predictive maintenance differs | preventive maintenance | expected life statistics | early fault detection | resource optimization | failure prediction | actual condition | main components | data collection | driving forces | manufacturing | productivity | equipment | necessary

Predictive maintenance evaluates the condition of equipment by performing periodic (offline) or continuous (online) equipment condition monitoring. The ultimate goal of the approach is to perform maintenance at a scheduled point in time when the maintenance activity is most cost-effective and before the equipment loses performance within a threshold. This results in a reduction in unplanned downtime costs because of failure where for instance costs can be in the hundreds of thousands per day depending on industry.[5] In energy production in addition to loss of revenue and component costs, fines can be levied for non delivery increasing costs even further. This is in contrast to time- and/or operation count-based maintenance, where a piece of equipment gets maintained whether it needs it or not. Time-based maintenance is labor intensive, ineffective in identifying problems that develop between scheduled inspections, and so is not cost-effective.

Description:

Predictive maintenance evaluates the condition of equipment by performing periodic (offline) or continuous (online) equipment condition monitoring. The ultimate goal of the approach is to perform maintenance at a scheduled point in time when the maintenance activity is most cost-effective and before the equipment loses performance within a threshold. This results in a reduction in unplanned downtime costs because of failure where for instance costs can be in the hundreds of thousands per day depending on industry.[5] In energy production in addition to loss of revenue and component costs, fines can be levied for non delivery increasing costs even further. This is in contrast to time- and/or operation count-based maintenance, where a piece of equipment gets maintained whether it needs it or not. Time-based maintenance is labor intensive, ineffective in identifying problems that develop between scheduled inspections, and so is not cost-effective.

Related Keyphrases:

unplanned downtime costs | Predictive maintenance | maintenance activity | perform maintenance | condition monitoring | identifying problems | component costs | energy production | instance costs | labor intensive | ultimate goal | equipment | non delivery | inspections | performance

Description:

Why Wood drying

In the wood industry, wood is dried

• Remove moisture

• Improve structural integrity to avoid damage from shrinkage

• Control the color, shape

• Elimination of living organisms like insects and parasites.

Advantages of Microwave/RF Drying

• Fast drying ( 2 days in a Kiln instead of 2 month in the back yard ) 

• The most homogeneous drying process

• Minimize danger of cracks, shape and changing the color of wood

• Avoiding burning the center of the beam


Chemical free

• Methyl bromide (MeBr) has been widely used to decontaminate wood infected by living organisms.

• MeBr is highly toxic and depletes the stratospheric ozone layer, the use of Microwave is non toxic and eco friendly

Typical Customers

• Wood processors

• Wood Exporters

• Furniture manufacturers

• Shipping material providers

Advantages of Fiber Optics

Fiber optic monitoring in wood drying provides significant benefits to traditional methods

• Test certificates for customer specification compliance

• Fiber optic sensors are immune to RF/ Microwave

• Avoid RF waves burning the center of the beam

• Continuous Monitoring for quality control

Advantages of Fiber Optics

Fiber optic monitoring in wood drying provides significant benefits to traditional methods


• Sensors 

• Monitors

• Softwarea






Related Keyphrases:

Fiber OpticsFiber optic monitoring | customer specification compliance | Improve structural integrity | material providersAdvantages | stratospheric ozone layer | friendlyTypical Customers | quality controlAdvantages | decontaminate wood | Fiber optic sensors | Furniture manufacturers | significant benefits | Continuous Monitoring | traditional methods | bull | wood industry

Description:

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Related Keyphrases:

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium | Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit | quia non numquam eius modi tempora incidunt ut labore et dolore magnam | quis nostrum exercitationem ullam corporis suscipit laboriosam | vel illum qui dolorem eum fugiat quo voluptas | eos qui ratione voluptatem sequi nesciunt | Quis autem vel eum iure reprehenderit qui | eaque ipsa quae ab illo inventore veritatis et | nisi ut aliquid ex ea commodi consequatur | qui dolorem ipsum quia dolor sit | beatae vitae dicta sunt explicabo | quia consequuntur magni | Ut enim ad minima veniam | molestiae consequatur | quaerat voluptatem

Telemetry is an automated communications process by which measurements and other data are collected at remote or inaccessible points and transmitted to receiving equipment for monitoring.[1] The word is derived from Greek roots: tele = remote, and metron = measure. Systems that need external instructions and data to operate require the counterpart of telemetry, telecommand.[2]

Although the term commonly refers to wireless data transfer mechanisms (e.g., using radio, ultrasonic, or infrared systems), it also encompasses data transferred over other media such as a telephone or computer network, optical link or other wired communications like power line carriers. Many modern telemetry systems take advantage of the low cost and ubiquity of GSM networks by using SMS to receive and transmit telemetry data.

telemeter is a device used to remotely measure any quantity. It consists of a sensor, a transmission path, and a display, recording, or control device. Telemeters are the physical devices used in telemetry. Electronic devices are widely used in telemetry and can be wireless or hard-wired, analog or digital. Other technologies are also possible, such as mechanical, hydraulic and optical.[3]

Telemetry may be commutated to allow the transmission of multiple data streams in a fixed frame.

Description:

Telemetry is an automated communications process by which measurements and other data are collected at remote or inaccessible points and transmitted to receiving equipment for monitoring.[1] The word is derived from Greek roots: tele = remote, and metron = measure. Systems that need external instructions and data to operate require the counterpart of telemetry, telecommand.[2]

Although the term commonly refers to wireless data transfer mechanisms (e.g., using radio, ultrasonic, or infrared systems), it also encompasses data transferred over other media such as a telephone or computer network, optical link or other wired communications like power line carriers. Many modern telemetry systems take advantage of the low cost and ubiquity of GSM networks by using SMS to receive and transmit telemetry data.

telemeter is a device used to remotely measure any quantity. It consists of a sensor, a transmission path, and a display, recording, or control device. Telemeters are the physical devices used in telemetry. Electronic devices are widely used in telemetry and can be wireless or hard-wired, analog or digital. Other technologies are also possible, such as mechanical, hydraulic and optical.[3]

Telemetry may be commutated to allow the transmission of multiple data streams in a fixed frame.

Related Keyphrases:

wireless data transfer mechanisms | Many modern telemetry systems | multiple data streams | communications process | transmit telemetry | external instructions | Electronic devices | inaccessible points | power line carriers | transmission path | physical devices | computer network | control device | communications | optical link

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book.

It is a long established fact that a reader will be distracted by the readable content of a page when looking at its layout. The point of using Lorem Ipsum is that it has a more-or-less normal distribution of letters, as opposed to using 'Content here, content here', making it look like readable English. Many desktop publishing packages and web page editors now use Lorem Ipsum as their default model text, and a search for 'lorem ipsum' will uncover many web sites still in their infancy. Various versions have evolved over the years, sometimes by accident, sometimes on purpose (injected humour and the like).

Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.




Description:

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book.

It is a long established fact that a reader will be distracted by the readable content of a page when looking at its layout. The point of using Lorem Ipsum is that it has a more-or-less normal distribution of letters, as opposed to using 'Content here, content here', making it look like readable English. Many desktop publishing packages and web page editors now use Lorem Ipsum as their default model text, and a search for 'lorem ipsum' will uncover many web sites still in their infancy. Various versions have evolved over the years, sometimes by accident, sometimes on purpose (injected humour and the like).

Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.




Related Keyphrases:

Lorem Ipsum passage | Lorem ipsum dolor sit | classical Latin literature | s standard dummy text | classical literature | obscure Latin words | default model text | normal distribution | undoubtable source | Richard McClintock | readable content | web page editors | readable English | Latin professor

Description:

Why Wood drying: In the wood industry, wood is dried     


  • Remove moisture 
  • Improve structural integrity to avoid damage from shrinkage    
  • Control the color, shape    
  • Elimination of living organisms like insects and parasites.

Advantages of Microwave/RF Drying:    


  • Fast drying ( 2 days in a Kiln instead of 2 month in the back yard )
  • The most homogeneous drying process
  • Minimize danger of cracks, shape and changing the color of wood    
  • Avoiding burning the center of the beam  

Chemical free     


  • Methyl bromide (MeBr) has been widely used to decontaminate wood infected by living organisms.
  • MeBr is highly toxic and depletes the stratospheric ozone layer, the use of Microwave is non toxic and eco friendly 

Typical Costomers


  • Wood Processors
  • Wood Exporters
  • Furniture Manufacturers
  • Shipping Material Provider

Related Keyphrases:

Typical CostomersWood ProcessorsWood ExportersFurniture ManufacturersShipping Material Provider | Improve structural integrity | stratospheric ozone layer | processMinimize danger | decontaminate wood | nbsp | living organisms | wood industry | Remove moisture | Methyl bromide | decontaminate | Chemical free | stratospheric | avoid damage | homogeneous

Description:

Advantages of Fiber Optics: Fiber optic monitoring in wood drying provides significant benefits to traditional methods    


  • Test certificates for customer specification compliance    
  • Fiber optic sensors are immune to RF/ Microwave
  • Avoid RF waves burning the center of the beam
  • Continuous Monitoring for quality control  

Products used for this solution: Rugged Monitoring Products used in these applications 


  • Monitors: T 301
  • Sensors: Lsens – T, Rugged capillary
  • Software: Rugged Connect



Related Keyphrases:

customer specification compliance | Rugged Monitoring Products | beamContinuous Monitoring | Rugged capillarySoftware | Fiber optic monitoring | Fiber optic sensors | significant benefits | traditional methods | MicrowaveAvoid RF | Test certificates | quality control | Rugged Connect | MicrowaveAvoid | T 301Sensors | applications