Related to "normal distribution"

Description:

A heavy duty fiber optic temperature sensor specially designed for harsh and dynamic operating conditions where stress on the Fiber Optic Cable is more than normal. The sensor offers complete immunity to RFI, EMI, NMR, Corrosive and microwave radiation making it the best choice for all demanding applications. The standard temperature sensor has a response time of 0.2 s. with a standard deviation of +/-0.2 °C. Each sensor allows precise and repeatable measurements. The coating of the temperature sensor is made of heavy duty material, while the fiber tip has a diameter of 1.1mm and has a stainless steel ST-connector. For mechanical stability and applications e.g. in oil special protective coatings and hoses are available. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and immune to external fields, therefore probes are explicitly suitable for use in high temperature ranges as well as in aggressive operating environments. The sensor cable can be from several meters to kilometers long without influencing the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

heavy duty fiber optic temperature sensor | sensor offers complete immunity | standard temperature sensor | aggressive operating environments | oil special protective coatings | dynamic operating conditions | repeatable measurements | heavy duty material | fiber optic probe | mechanical stability | high temperature | microwave radiation | sensor lengths | standard deviation | measurement result

Description:

A heavy duty fiber optic temperature sensor specially designed for harsh and dynamic operating conditions where stress on the Fiber Optic Cable is more than normal. The sensor offers complete immunity to RFI, EMI, NMR, Corrosive and microwave radiation making it the best choice for all demanding applications. The standard temperature sensor has a response time of 0.2 s. with a standard deviation of +/-0.2 °C. Each sensor allows precise and repeatable measurements. The coating of the temperature sensor is made of heavy duty material, while the fiber tip has a diameter of 1.1mm and has a stainless steel ST-connector. For mechanical stability and applications e.g. in oil special protective coatings and hoses are available. The fiber optic probe consists of a PTFE protected glass fiber and a GaAs-crystal (Gallium Arsenide) at the sensor tip. It is totally free of metal and immune to external fields, therefore probes are explicitly suitable for use in high temperature ranges as well as in aggressive operating environments. The sensor cable can be from several meters to kilometers long without influencing the accuracy of the measurement result. Other sensor lengths and connector types are available upon request.

Related Keyphrases:

heavy duty fiber optic temperature sensor | sensor offers complete immunity | standard temperature sensor | aggressive operating environments | oil special protective coatings | dynamic operating conditions | repeatable measurements | heavy duty material | fiber optic probe | mechanical stability | high temperature | microwave radiation | sensor lengths | standard deviation | measurement result

Description:

Temperature management is one of the most important part in the design, development and testing process of electric / hybrid vehicles. The performance and aging of all critical components of electric vehicle highly depend on the temperature distribution and developing hot spots within. Therefore,  faster and accurate temperature measurement is necessary at each stage of EV product development e.g. individual component level testing for identifying performance limits and temperature behavior of individual components, and fully assembled electric vehicles to ensure the overall performance and safety.

Electric / Hybrid vehicle design and architecture differs a lot from the traditional Petrol and Diesel vehicles. The shift from low voltage to high voltage (up to 1000V) connections and operations within the similar vehicle space (or some time lesser space) bring challenges in terms of safety, limited access and electromagnetic noise issues during testing and measurements. Fiber Optic technology based sensors e.g. Fiber Optic Temperature sensors are becoming more and more popular in testing Electric / Hybrid vehicles due to their immunity to electromagnetic field, ruggedness, smaller size, faster response, high accuracy and safety of operation.

Related Keyphrases:

Fiber Optic Temperature sensors | accurate temperature measurement | electromagnetic noise issues | individual component level | temperature distribution | Hybrid vehicle design | Fiber Optic technology | similar vehicle space | individual components | Temperature management | EV product development | Hybrid vehicles due | electric vehicles | electromagnetic field | overall performance

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book.

It is a long established fact that a reader will be distracted by the readable content of a page when looking at its layout. The point of using Lorem Ipsum is that it has a more-or-less normal distribution of letters, as opposed to using 'Content here, content here', making it look like readable English. Many desktop publishing packages and web page editors now use Lorem Ipsum as their default model text, and a search for 'lorem ipsum' will uncover many web sites still in their infancy. Various versions have evolved over the years, sometimes by accident, sometimes on purpose (injected humour and the like).

Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.




Description:

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book.

It is a long established fact that a reader will be distracted by the readable content of a page when looking at its layout. The point of using Lorem Ipsum is that it has a more-or-less normal distribution of letters, as opposed to using 'Content here, content here', making it look like readable English. Many desktop publishing packages and web page editors now use Lorem Ipsum as their default model text, and a search for 'lorem ipsum' will uncover many web sites still in their infancy. Various versions have evolved over the years, sometimes by accident, sometimes on purpose (injected humour and the like).

Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.




Related Keyphrases:

Lorem Ipsum passage | Lorem ipsum dolor sit | classical Latin literature | s standard dummy text | classical literature | obscure Latin words | default model text | normal distribution | undoubtable source | Richard McClintock | readable content | web page editors | readable English | Latin professor